Optical Communications Team

From Stanford SSI Wiki
(Redirected from Optical communications)
Jump to navigation Jump to search
Optical Communications
Part of the Optical Communications series
Team Goals
Amateur Optical Communication RecordCubeQuest Challenge
Equipment
OpComms System ISystem IISystem IIISystem IV3 cm Board
Noteworthy Tests
SSI-1E4Test Procedure
Important Concepts
The Field of Optical CommunicationsBeam DivergencePulse Position ModulationScintillationPrecision AimingFogLong Range RFOptical Internet BackhaulSignal-to-Noise Ratio
Field Test Locations
W6YX (also see Amateur Radio) • Skyline Boulevard OverlookProposed Alternate OpComms Test Sites
People
Dr. Simone D'Amico (Team Advisor)Elizabeth Hillstrom (Co-Lead)Sasha Maldonado (Co-Lead)Dr. Joseph KahnDr. Leo Hollberg
Optical Communications Satellites
FitSat-1LADEEARTEMIS and SPOT-4OICETSOPALSJPL 1U Optical Communications Terminal
Astronomy
Las Cumbres Observatory Global Telescope NetworkStanford Astronomy ClubStanford Student Observatory
Miscellaneous
Tactical Cinderblock
VE
Mission patch for the Satellites Team's first successful 10km optical link, which achieved an optical lock
On a subsequent test, the team was able to bidirectionally encode and decode a string of bits.

Optical Communications was a student-led project that aimed to develop the capability to establish high-bandwidth data links over free space. The group began work at the beginning of the 2014-2015 academic year, under the leadership of Thomas Teisberg and Logan Herrera. It was initially formed to investigate the possibility of space-based optical communications, with the intent to participate in the NASA CubeQuest Challenge, a competition for small satellite design, but later moved away from the competition design constraints.

The Optical Communications group evolved to focus on the establishment of long-distance optical links, with the eventual goal of integrating this technology into a CubeSat form-factor satellite for the purposes of space-based communication. In its first year of existence, the group developed a system involving mechanized altitude/azimuth mounts, an original receiver device consisting of a Fresnel lens and photodetector, and a MATLAB pointing algorithm based on reference point alignment. The group’s final test of the 2014-15 year resulted in the successful establishment of an optical lock over 10 kilometers. The group was able to successfully transmit encoded data over 10 kilometers in August 2015.