Difference between revisions of "L1 Certification"
(→L1 Requirements: updated init summary) |
(→L1 Requirements: combined NAR and TRA reqs) |
||
Line 8: | Line 8: | ||
= L1 Requirements = | = L1 Requirements = | ||
+ | |||
+ | The following is a combination of the NAR and TRA requirements and rules. | ||
You must be at least 18 years old to be certified for Level 1. Although it is good practice to already be a member of NAR and/or TRA before certifying, in practice it is not enforced. Motors must be certified and non-experimental. | You must be at least 18 years old to be certified for Level 1. Although it is good practice to already be a member of NAR and/or TRA before certifying, in practice it is not enforced. Motors must be certified and non-experimental. | ||
Line 13: | Line 15: | ||
Your certifier (in NAR) needs to be either two people with the level you are attempting for, or one person with the level above the one you are attempting for. They must witness the flight. | Your certifier (in NAR) needs to be either two people with the level you are attempting for, or one person with the level above the one you are attempting for. They must witness the flight. | ||
− | == TRA == | + | == TRA and NAR == |
This section is a verbatim copy of [http://www.tripoli.org/Level1 TRA's page on L1 certification]. | This section is a verbatim copy of [http://www.tripoli.org/Level1 TRA's page on L1 certification]. | ||
Line 25: | Line 27: | ||
=== Motor === | === Motor === | ||
− | The certification flight must be with a single certified H or I motor (tested total impulse between 160.01 and 640.00 n-sec). | + | The certification flight must be with a single certified H or I motor (tested total impulse between 160.01 and 640.00 n-sec).TRA does not allow staged and/or Clustered rockets for certification flights while NAR states you must use at least one HPR motor on your certification rocket. The flyer shall be observed by the certifying member or their designated representative during the assembly (if a reload or hybrid) and preparation of the motor. Single use motors are permitted. |
=== Electronics === | === Electronics === | ||
Electronics are not required for level 1 certification flights. | Electronics are not required for level 1 certification flights. | ||
+ | |||
+ | === Pre-flight Inspection === | ||
+ | The model will be subjected to a safety inspection prior to flight. The safety inspection form is on the back of the NAR High Power Certification Application. During the safety inspection the modeler will be expected to provide oral answers to technical questions related to the safety and construction of his model. The questions may include (but not limited to) identification of the model’s center of gravity and center of pressure, methods used to determine model stability, and interpretation of the rocket motor’s designation. The certification team will initial (or check) the blocks indicating that model safety, motor certification, and the existence of a FAA waiver (if required) in effect were verified prior to flight. | ||
=== Certification Flight === | === Certification Flight === | ||
− | Level 1 Certification flight may take place at any insured launch. The certifying member (i.e. Prefect, TRA Director, or TAP Member) must be present and witness the certification flight. The certifying member must witness the rocket ascend in a stable manner and descend in stabilized manner controlled by the recovery system. | + | Level 1 Certification flight may take place at any insured launch. The certifying member (i.e. Prefect, TRA Director, NAR certifiers or TAP Member) must be present and witness the certification flight. The certifying member must witness the rocket ascend in a stable manner and descend in stabilized manner controlled by the recovery system. |
=== Post-Flight Inspection === | === Post-Flight Inspection === | ||
− | The rocket must be presented to the certifying member for inspection. If the rocket cannot be recovered, but can be inspected in place (power lines, tree, etc...) this is acceptable. The certifying member shall inspect the rocket for excessive damage. Excessive damage shall be considered damage to the point that if the flyer were handed another motor, the rocket could not be put on the pad and flown again safely. Damage caused by wind dragging will not cause a disqualification. | + | The rocket must be presented to the certifying member for inspection. If the rocket cannot be recovered, but can be inspected in place (power lines, tree, etc...) this is acceptable. The certifying member shall inspect the rocket for excessive damage. Excessive damage shall be considered damage to the point that if the flyer were handed another motor, the rocket could not be put on the pad and flown again safely. Damage caused by wind dragging will not cause a disqualification. If successful, the certifiers will sign the correct sheet to indicate that the certification attempt was successfully completed. |
+ | |||
+ | == Post-Post-Flight | ||
+ | The certification sheets are returned to NAR or TRA Headquarters. No fees are required. The certification sheet must be returned by the certified individual or the event sponsors to NAR or TRA Headquarters to allow updating the NAR or TRA database. NAR sends an updated membership card showing the certification level upon receipt of the certification paperwork. | ||
=== Non-certification === | === Non-certification === | ||
Line 45: | Line 53: | ||
:*Any other violation of TRA safety code associated with this particular flight. | :*Any other violation of TRA safety code associated with this particular flight. | ||
:*Any other legitimate reason the certifying member deems merits non-certification | :*Any other legitimate reason the certifying member deems merits non-certification | ||
− | |||
− | |||
= Launch Locations = | = Launch Locations = |
Revision as of 10:08, 26 January 2016
This is not fine This article requires considerable cleanup to meet SSI wiki quality standards. Please help the SSI Wiki by correcting formatting and fixing errors in content and organization. |
---|
In order to understand high power rocketry enough to launch and successfully recover an L1 rocket, you must read, live, and understand the following information.
Background Information
NASA's online Beginner's Guide To Rockets will get you started on many of the basic principles governing rocketry. If you manage to make your way through all of these, you will understand the vernacular often used in rocketry.
L1 Requirements
The following is a combination of the NAR and TRA requirements and rules.
You must be at least 18 years old to be certified for Level 1. Although it is good practice to already be a member of NAR and/or TRA before certifying, in practice it is not enforced. Motors must be certified and non-experimental.
Your certifier (in NAR) needs to be either two people with the level you are attempting for, or one person with the level above the one you are attempting for. They must witness the flight.
TRA and NAR
This section is a verbatim copy of TRA's page on L1 certification. Level 1 Certification allows flyers to fly High Power Rockets with a total installed impulse up to 640 newton-seconds.
Airframe
The rocket must be built by the flyer. The rocket shall have a display on the exterior identifying the calculated center of pressure. The rocket must be of "conventional rocket design". "Odd Rockets" including flying pyramids, saucers and flying spools will not be allowed for any certification flight. The rocket may be either a kit or scratch built. Scratch built rockets may contain commercially built components.
Recovery
Standard parachute recovery is required. Non-parachute recovery methods (e.g. tumble, helicopter, gliding, etc) are not permitted for certification flights. If the rocket is using dual deployment, the first recovery event may be via a drogue-less or streamer as long as the main or second event uses a standard parachute.
Motor
The certification flight must be with a single certified H or I motor (tested total impulse between 160.01 and 640.00 n-sec).TRA does not allow staged and/or Clustered rockets for certification flights while NAR states you must use at least one HPR motor on your certification rocket. The flyer shall be observed by the certifying member or their designated representative during the assembly (if a reload or hybrid) and preparation of the motor. Single use motors are permitted.
Electronics
Electronics are not required for level 1 certification flights.
Pre-flight Inspection
The model will be subjected to a safety inspection prior to flight. The safety inspection form is on the back of the NAR High Power Certification Application. During the safety inspection the modeler will be expected to provide oral answers to technical questions related to the safety and construction of his model. The questions may include (but not limited to) identification of the model’s center of gravity and center of pressure, methods used to determine model stability, and interpretation of the rocket motor’s designation. The certification team will initial (or check) the blocks indicating that model safety, motor certification, and the existence of a FAA waiver (if required) in effect were verified prior to flight.
Certification Flight
Level 1 Certification flight may take place at any insured launch. The certifying member (i.e. Prefect, TRA Director, NAR certifiers or TAP Member) must be present and witness the certification flight. The certifying member must witness the rocket ascend in a stable manner and descend in stabilized manner controlled by the recovery system.
Post-Flight Inspection
The rocket must be presented to the certifying member for inspection. If the rocket cannot be recovered, but can be inspected in place (power lines, tree, etc...) this is acceptable. The certifying member shall inspect the rocket for excessive damage. Excessive damage shall be considered damage to the point that if the flyer were handed another motor, the rocket could not be put on the pad and flown again safely. Damage caused by wind dragging will not cause a disqualification. If successful, the certifiers will sign the correct sheet to indicate that the certification attempt was successfully completed.
== Post-Post-Flight The certification sheets are returned to NAR or TRA Headquarters. No fees are required. The certification sheet must be returned by the certified individual or the event sponsors to NAR or TRA Headquarters to allow updating the NAR or TRA database. NAR sends an updated membership card showing the certification level upon receipt of the certification paperwork.
Non-certification
Any of the following will result in non-certification for a certification flight:
- Motor Cato
- Excessive Damage
- No recovery system deployment or tangled recovery system deployment
- Rocket drifting outside the specified launch range
- Components coming down not attached to the recovery system.
- Any other violation of TRA safety code associated with this particular flight.
- Any other legitimate reason the certifying member deems merits non-certification
Launch Locations
Map
Time launch begins
etc
Launch Day Procedures
Who You Will Meet
RSO
Mike
Cliff
Stu
What You Need To Bring
People Fuel - water food money etc
Car Fuel - petrol
Appropriate Clothing
Vendors
BAR
Range Layout
Big, cars on the side, site in the middle
Packing Your Parachute
It should not be too tight. Etc.
Here is a video.
Here is how a NAR member does it. (Cliff)
Look at these great diagrams.
Prepping Your Motor
If using a single use motor or Disposable Motor System, make sure to check that the delay on the ejection charge is correct using a simulation software (i.e. OpenRocket). If needed adjust the length of the delay grain. Then place the correct quantity of ejection propellant in the correct location. Cap it.
Here is a great video to watch.
Range Safety Check
Is your paperwork in order?
Motors
Is the motor certified, what is the motor type and average thrust? Is the delay time is approximate for rocket?
Will the rocket penetrate cloud cover?
Does your rocket motor have the ejection charge installed?
Is sufficient wadding/Kevlar installed?
What kind of motor retention system is installed?
What prevents the motor from flying-through the rocket?
Rocket Construction
Stability? Is the CG in front of the CP? Be able to identify both.
Is the nose cone fitted correctly?
Launch lugs and/or rail guides properly installed, positioned, and aligned?
Fins atttached securely and in a manner that will not cause an unsafe flight?
Is an appropriately-sized recovery system installed and attached?
Are there vent holes?
Launch Pad Procedure
The rocket should slide freely on the rail. The pad angle should be within 20 degrees of the vertical axis (normal to the surface of the earth). Flight critical electronics (if there are any) should be armed before putting in igniters. Any radio control equipment should also be nominally operating before arming the igniters.
How to install an igniter
Place in the nozzle of rocket, and tape the igniter to the rocket so it does not slide out. Make sure not to short the leads of the igniters.
Here is a great video to watch.
Success and Failure
Following the launch, the rocket will be inspected; should the airframe be deemed suitable for flight given a new motor, it will have passed L1 certification. Failed deployment, motor cato, drifting beyond a particular range (see launch officer), or the violation of other safety codes will result in a failure. L1 certification, however, is an excellent introduction to the basic operations of rockets and recovery! See Pegasus for a description of an L1 rocket used as a testbed for an L3 concept.
Final Steps
Mailing It In
You must mail in your certification form to have the rocketry association acknowledge your achievement. These are the addresses of NAR and TRA.