Balloonerang
Retrieving payloads is just as important as launching them. Balloonerang tackles the challenge of payload recovery with a single, integrated, guided recovery system, simulating when aerodynamics, mechanical, and controls work become inseparable. It is the newest and fastest growing balloons team.
A Balloonerang payload is launched to near-space and then autonomously glides to land near the outskirts of inhabited areas, reducing time and cost of recovery operations. This stubby glider spends up to a week in the freezing upper atmosphere, ballasting weight, recharging batteries with onboard solar panels, keeping itself and the payload warm, and communicating important data back to Earth with its satellite radio system. When it’s time to terminate the mission, the glider severs its connection to the balloon and zips back to earth at over 70mph, fighting hundred mile per hour jetstreams, stabilizing itself in high altitude turbulence, and guiding itself to a mission defined recovery site. At 400 feet above the ground, the glider deploys the parachute and descends safely to the ground. Whew! What a journey! And what an adventure for you to go on!
If you’re interested in CAD design, board fabrication, data visualization, aerodynamics, optimizing flight paths, or anything electronics, Balloonerang has a place for you to shine. Join this tight knit team to experience a little bit of everything: flight control algorithms, complex mechanical design, and hands-on electrical engineering experience.
Contact @Rohan Sanda
, the Balloonerang project lead, for more details about the project.