Changes

13 bytes removed ,  04:15, 25 January 2016
m
→‎Safety Hazards: Removed errant "<math>" tags
Line 198: Line 198:  
== Safety Hazards ==
 
== Safety Hazards ==
   −
For this rocket using a parafoil recovery system creates most of the possible risks of having an unsuccessful flight. Our first risk is the parafoil not deploying properly. This could mean not emerging from the rocket, becoming tangled upon exit of the airframe, and becoming tangled in mid-air while opening. To mitigate the first issue, non-emergence, we are performing pre-launch date small scale tests to practice our system and amount of propellant needed to fully expel the parafoil. The second issue of becoming tangled upon exit we will also be performing small scale tests on prior to the full L3 rocket. This test will be performed again using a static run on the L3 to make sure we scaled it up properly. The final issue of becoming tangled while opening will also be examined through the small scale L1-L2 tests and should be mitigated depending on how the parafoil is folded and fit into the rocket airframe. The parafoil is also going to be contained in a freebag that will be pulled out by the drogue chute. This combination should also help prevent the other issues upon exit. In the event that all of this fails, the payload for the rocket is a parachute that is rigged to an altimeter. Upon too quick of a descent (aka parafoil mal-deployment) the parachute will deploy prematurely to slow the descent of the rocket to a safe speed of 20 <math>m/s</math>.
+
For this rocket using a parafoil recovery system creates most of the possible risks of having an unsuccessful flight. Our first risk is the parafoil not deploying properly. This could mean not emerging from the rocket, becoming tangled upon exit of the airframe, and becoming tangled in mid-air while opening. To mitigate the first issue, non-emergence, we are performing pre-launch date small scale tests to practice our system and amount of propellant needed to fully expel the parafoil. The second issue of becoming tangled upon exit we will also be performing small scale tests on prior to the full L3 rocket. This test will be performed again using a static run on the L3 to make sure we scaled it up properly. The final issue of becoming tangled while opening will also be examined through the small scale L1-L2 tests and should be mitigated depending on how the parafoil is folded and fit into the rocket airframe. The parafoil is also going to be contained in a freebag that will be pulled out by the drogue chute. This combination should also help prevent the other issues upon exit. In the event that all of this fails, the payload for the rocket is a parachute that is rigged to an altimeter. Upon too quick of a descent (aka parafoil mal-deployment) the parachute will deploy prematurely to slow the descent of the rocket to a safe speed of 20 m/s.
    
The second point of risk is when the rocket is descending while being controlled by the parafoil and the step motors. There is always a possibility of having strong winds above 10,000ft and gusts could cause major control issues for both the stepper motors and for the coded flight plan. Some fail-safes are put into place such as having overly robust stepper motors so that under larger-than-predicted forces the stepper motors will not fail. Another safe-guard are pre-written statements that are associated with the parachute. These safe-guards include too quick of a descent rate (parafoil failure), prolonged ascension after the rocket has reached apogee (in case of thermals or wind gusts forcing the parafoil upwards).
 
The second point of risk is when the rocket is descending while being controlled by the parafoil and the step motors. There is always a possibility of having strong winds above 10,000ft and gusts could cause major control issues for both the stepper motors and for the coded flight plan. Some fail-safes are put into place such as having overly robust stepper motors so that under larger-than-predicted forces the stepper motors will not fail. Another safe-guard are pre-written statements that are associated with the parachute. These safe-guards include too quick of a descent rate (parafoil failure), prolonged ascension after the rocket has reached apogee (in case of thermals or wind gusts forcing the parafoil upwards).
767

edits