Changes

Jump to navigation Jump to search
2,190 bytes removed ,  19:33, 8 September 2020
Line 5: Line 5:     
= Balloons =
 
= Balloons =
 +
 +
'''Note: the below listing is no longer maintained and is out of date. Please see the [[Balloons]] page for an updated list.'''
    
== HABMC ==
 
== HABMC ==
Line 16: Line 18:     
== ValBal ==
 
== ValBal ==
 +
'''Note: the below project is no longer active in SSI. Please see the [[Balloons]] page for an updated list of projects.'''
 +
 +
 
ValBal (Valve and Ballast), is a world record-breaking high-altitude balloon payload that autonomously maintains a set altitude for days of flight by venting helium gas and dropping ballast. If you are interested in MechE, EE, CS, Physics, or even MatSci or ChemE, there's a place for you on the ValBal team!  
 
ValBal (Valve and Ballast), is a world record-breaking high-altitude balloon payload that autonomously maintains a set altitude for days of flight by venting helium gas and dropping ballast. If you are interested in MechE, EE, CS, Physics, or even MatSci or ChemE, there's a place for you on the ValBal team!  
   Line 30: Line 35:  
ValBal’s current electrical system consists of two compact, low-cost, 4 layer printed circuit boards with a custom avionics platform and a prototype digital radio communication link.  The avionics consist of a multitude of sensors, a GPS, a two-way satellite communications system, motor drivers, power regulation, an embedded micro-controller, and much, much more!  The digital radio system consists of a 433 MHz GFSK modulated, Reed-Solomon error corrected link that has been proven to reach ranges of 200 km at data-rates significantly greater than that of the Iridium constellation at 1/5th of the power consumption and 1/20th the cost.  There are a multitude of ways to join the electrical engineering aspect of ValBal, so if any of this stuff interests you, join! Contact {{slack-user|ariatedjarati}} for more information.
 
ValBal’s current electrical system consists of two compact, low-cost, 4 layer printed circuit boards with a custom avionics platform and a prototype digital radio communication link.  The avionics consist of a multitude of sensors, a GPS, a two-way satellite communications system, motor drivers, power regulation, an embedded micro-controller, and much, much more!  The digital radio system consists of a 433 MHz GFSK modulated, Reed-Solomon error corrected link that has been proven to reach ranges of 200 km at data-rates significantly greater than that of the Iridium constellation at 1/5th of the power consumption and 1/20th the cost.  There are a multitude of ways to join the electrical engineering aspect of ValBal, so if any of this stuff interests you, join! Contact {{slack-user|ariatedjarati}} for more information.
   −
*CS -- '''Lead: Davy Ragland''' Contact {{slack-user|dragland}}
+
*CS -- '''Lead: Davy Ragland'''  
 +
With ValBal CS, you will learn how to design and build robust, reliable, and flight critical embedded systems code. Since we cannot simply patch the firmware when it is flying, and if something goes wrong we could literally crash, we have to model our system in a way that accounts for complex states, edge cases, and emergent properties. From smart subsystem rebooting to bidirectional comms with parameter tuning, and from a multitude of flight modes to heavily optimized processor and memory behavior, ValBal is the perfect place to hone your skills building something that not only works, but works to industry standards.
 +
Contact {{slack-user|dragland}} to get involved!
    
*Physics -- As a physics major, there are plenty of opportunities for you to work on ValBal. It is an insanely complex system; the flight dynamics are not yet completely understood and require simulating atmospheric and thermal effects. Good models are critical to create a good controller, another key component to ValBal that limits our possible endurance. At the same time, you can help with the design of the payload itself, considering how to optimize it for the harsh environment and coming up with good designs. Contact {{slack-user|jcreus}} for more inforation and a good dose of jank.
 
*Physics -- As a physics major, there are plenty of opportunities for you to work on ValBal. It is an insanely complex system; the flight dynamics are not yet completely understood and require simulating atmospheric and thermal effects. Good models are critical to create a good controller, another key component to ValBal that limits our possible endurance. At the same time, you can help with the design of the payload itself, considering how to optimize it for the harsh environment and coming up with good designs. Contact {{slack-user|jcreus}} for more inforation and a good dose of jank.
Line 39: Line 46:     
== HABEES ==
 
== HABEES ==
 +
'''Note: the below project is no longer active in SSI. Please see the [[Balloons]] page for an updated list of projects.'''
 +
 +
 
HABEES (High Altitude Balloon Electrical Engineering Systems) is the umbrella project for all EE & CS projects outside of ValBal (that is, largely oriented at standard profile balloon launches). Because of this, there is a nearly limitless number of possibilities and projects to pursue within HABEES -- with that said, if you're new to EE or CS, or a veteran, and just generally want some ideas of what you can make, here's a bunch! Contact {{slack-user|kirillsafin}} to discuss working on any of these!
 
HABEES (High Altitude Balloon Electrical Engineering Systems) is the umbrella project for all EE & CS projects outside of ValBal (that is, largely oriented at standard profile balloon launches). Because of this, there is a nearly limitless number of possibilities and projects to pursue within HABEES -- with that said, if you're new to EE or CS, or a veteran, and just generally want some ideas of what you can make, here's a bunch! Contact {{slack-user|kirillsafin}} to discuss working on any of these!
   Line 65: Line 75:     
== BUZZ ==
 
== BUZZ ==
 +
'''Note: the below project is no longer active in SSI. Please see the [[Balloons]] page for an updated list of projects.'''
 +
 +
 
BUZZ is the umbrella subteam for balloons radio projects. It operated as part of HABEES, and works to develop/try/test new radio technologies within balloons. ValBal also develops independent and system-specific radio systems. Some ideas for possible projects, as well as ongoing projects, are below: Talk to {{slack-user|kirillsafin}} and {{slack-user|ariatedjarati}} about them!
 
BUZZ is the umbrella subteam for balloons radio projects. It operated as part of HABEES, and works to develop/try/test new radio technologies within balloons. ValBal also develops independent and system-specific radio systems. Some ideas for possible projects, as well as ongoing projects, are below: Talk to {{slack-user|kirillsafin}} and {{slack-user|ariatedjarati}} about them!
 
* Improved ATV link quality
 
* Improved ATV link quality
Line 130: Line 143:     
= Satellites =
 
= Satellites =
=== STAR-CROSSD===
  −
The Stanford Timing And Ranging –Cross-linking Optical Small Satellite Demonstration mission is an ambitious proposal seeking to place two cubesats in low Earth orbit and establish a laser-based data link between them across hundreds of kilometers. Such a mission has never before been attempted. If successful, the technology developed will enable a dramatic leap forward in the capabilities of both cubesats and larger satellitesto communicate high volumes of data across long distances.
  −
  −
Optical links using lasers are capable of dramatically higher data transmission speeds than existing radio systems, but have never been successfully demonstrated at the cubesat scale. A cubesat-sized optical communications system willenable high-speed links between cubesats, allowing for networks built from affordable satellites.Miniaturizing an optical communications system to fit in a cubesat would also make it far easier for larger satellites to add optical networking capabilities, an almost essential component of proposed internet satellite constellations.
     −
Satellites with optical links can not only transmit data faster, but also better synchronize their timekeeping with each other and measure their separation distance, important features of boththe GPS system and groups of scientific satellites. With an optical network, satellites could conduct previously impossible scientific missions and significantly improve the accuracy of GPS
+
===🌲🛰Sequoia 🛰🌲===
 
+
We are build a small satellite for earth observation and machine learning. Check out our page for more info! [[Satellites]]
Now is the perfect time to get involved with STAR-CROSSD. A number of subsystems need to be analyzed, designed, built, and tested, with opportunities to learn about electrical, mechanical, and software engineering, satellite operations, and more.
  −
 
  −
=== POINTR ===
  −
Polar Orbiting INfrared Tracking Receiver (POINTR) has been Satellites’ primary focus since February. POINTR is an in flight demonstration of an optical receiver pointing, acquisition and tracking (PAT) system. The optical receiver payload hosted on Audacy’s 3U cubesat would be pointed to the ground to acquire and track a beacon laser sent from a suitable ground facility, currently proposed as NASA JPL’s OCTL facility. This mission would demonstrate the operational and technical requirements related to two satellites establishing an optical communications link with each other. The requirements include mission planning, command and execution of a pointing maneuver, acquisition of an incoming optical signal and tracking of the optical signal. This mission can be broken into four main goals:
  −
 
  −
* Demonstrate a subset of technology for full bidirectional optical communications mission within the constraints placed by Audacy’s primary mission.
  −
 
  −
* Increase chance of bidirectional optical communications mission success.
  −
 
  −
* Develop experience within SSI designing and building space hardware.
  −
 
  −
* Contribute to the cubesat and satellite optical communications technical fields.
      
=== Our Subteams ===
 
=== Our Subteams ===
 
* '''Avionics'''
 
* '''Avionics'''
 
**'''The Gist'''The Avionics group works on all of the core electrical systems for the Satellites team, including electrical power distribution, sensors, and computing. Learn how to design and reflow Printed Circuit Boards (PCBs) and work with signal-processing to understand light signals in the inky darkness of space!  
 
**'''The Gist'''The Avionics group works on all of the core electrical systems for the Satellites team, including electrical power distribution, sensors, and computing. Learn how to design and reflow Printed Circuit Boards (PCBs) and work with signal-processing to understand light signals in the inky darkness of space!  
**'''The People To Talk to''' Sasha, Shi, Meera
+
**'''The People To Talk to''' {{slack-user|}}[https://ssi-teams.slack.com/messages/Akasha Akasha], {{slack-user|}}[https://app.slack.com/client/T04HYQ78L/DPXT9NFJ8/details/top Ian]
    
* '''GNC'''
 
* '''GNC'''
 
**'''The Gist''' The GNC group ("Guidance, Navigation, and Control") is responsible for determining and controlling the position and rotation of satellites in space even while hundreds or sometimes thousands of miles away. Join GNC to work with us on cutting-edge technologies and a system to control our satellites in orbit from the comfort of the SSI space bunker.
 
**'''The Gist''' The GNC group ("Guidance, Navigation, and Control") is responsible for determining and controlling the position and rotation of satellites in space even while hundreds or sometimes thousands of miles away. Join GNC to work with us on cutting-edge technologies and a system to control our satellites in orbit from the comfort of the SSI space bunker.
**'''The People To Talk to''' Sasha
+
**'''The People To Talk to''' Alec, Rodrigo
 
  −
* '''Optics'''
  −
**'''The Gist''' Optics is all about putting light to work - starting from simple laser pointers to finally sending a communications signal across 10 kilometers in space! We use lasers, lenses, filters, sensors and even moving mirrors to send light flying through space and catch it on the other side.
  −
**'''The People To Talk to''' Michael Taylor
      
* '''Software'''
 
* '''Software'''
 
**'''The Gist''' The software team tackles the many different challenges of software needed for satellites: from flight software to web development, we do it all. For flight software, we take advantage of parallel communications modules to manage real-time requirements on pointing control. For web development, we are partnering with the ground operations team to build thorough mission control software and web interface. If any of this seems daunting or complicated, don’t worry. We all started from scratch. Join software and get your code in space!
 
**'''The Gist''' The software team tackles the many different challenges of software needed for satellites: from flight software to web development, we do it all. For flight software, we take advantage of parallel communications modules to manage real-time requirements on pointing control. For web development, we are partnering with the ground operations team to build thorough mission control software and web interface. If any of this seems daunting or complicated, don’t worry. We all started from scratch. Join software and get your code in space!
**'''The People To Talk to''' Orien, Joan
+
**'''The People To Talk to''' Moritz, Langston
 
  −
* '''Ground Ops'''
  −
**'''The Gist''' The Ground Operations team will build mission control software and web interface to analyze satellite behavior in-flight and react accordingly. Aside from software, physics and orbital mechanics are crucial parts of this team’s ability. This team is responsible for testing spacecraft stability, fault tolerance, and final mission success.
  −
**'''The People To Talk to''' Orien
      
*'''Structures'''
 
*'''Structures'''
**'''The Gist''' The Structures team designs and builds all necessary flight mechanics, ranging from the overall structure to individual component mounts. We go through the full development process - whiteboard drawings, SolidWorks, and finally manufacturing.The Structures team is also responsible for many of the environmental considerations, such as the thermal and vacuum requirements of space, as well as the shock and vibration profile of launch.
+
**'''The Gist''' The Structures team designs and builds all necessary flight mechanics, ranging from the overall structure to individual component mounts. We go through the full development process - whiteboard drawings, Fusion 360, and finally manufacturing. The Structures team is also responsible for many of the environmental considerations, such as the thermal and vacuum requirements of space, as well as the shock and vibration profile of launch.
**'''The People To Talk to''' Anjali, Sandip
+
**'''The People To Talk to''' Connor, TaNia
    
= Biology =
 
= Biology =
Line 220: Line 209:  
* Plan and run general community events like Trivia Night, Pathfinder, and Movie Night
 
* Plan and run general community events like Trivia Night, Pathfinder, and Movie Night
 
== Diversity ==
 
== Diversity ==
* Build connections with engineering diversity groups on campus
+
* Find diverse speakers to bring to campus
 +
* Organize diversity mixers (including with other engineering groups)
 
* Help {{slack-user|ruqayyatoorawa}} run workshops
 
* Help {{slack-user|ruqayyatoorawa}} run workshops
 +
 
== Events ==
 
== Events ==
 
* Find an interesting company and arrange a tour or talk
 
* Find an interesting company and arrange a tour or talk

Navigation menu