Changes

Jump to navigation Jump to search
2,668 bytes added ,  01:51, 24 September 2020
m
Typo
Line 3: Line 3:  
== Sequoia GNC Onboarding ==
 
== Sequoia GNC Onboarding ==
   −
No matter what background you have, you can contribute to Sequoia GNC! You can learn about the intersection between physics, CS, and engineering and especially control theory. Here's a few aspects of our system we currently need someone to work on:
+
No matter what background you have, you can contribute to Sequoia GNC! You can learn about the intersection between physics, CS, and engineering that is control theory. Here's a few aspects of our system we currently need someone to work on:
    
{| class="wikitable"
 
{| class="wikitable"
|+ Chose a Project!
+
|+ Choose a Project!
 
|-
 
|-
 
! Project || Background || Skills/Knowledge Involved
 
! Project || Background || Skills/Knowledge Involved
Line 21: Line 21:     
|-
 
|-
| Write/improve our plotting software for satellite orbits and learn about orbital mechanics on the way! || There are a number of software packages that can predict satellite orbits, as well as some code we have, or we can walk you through programming our own. || Duck
+
| Write/improve our software for predicting and plotting satellite orbits and learn about orbital mechanics on the way! || There are a number of software packages that can predict satellite orbits, as well as some code we have, or we can walk you through programming your own. There are a number of miscellaneous orbit prediction tasks you can help with while learning about orbital mechanics and orbit prediction, or you can work your code to be part of our orbit tracking and plotting software or part of the orbit calculation code onboard the satellite depending on where you want to go with it. || Basic coding and physics helpful, but can be learned along the way as well.
 
|-
 
|-
 
|| Something New! || We are always looking for better ideas for our sattelite! Either better ways to achieve our current aims or (potentially) adding some new feature you want to work on. || We do not know what skills will be involved but we guess that churning butter will not be one of them.
 
|| Something New! || We are always looking for better ideas for our sattelite! Either better ways to achieve our current aims or (potentially) adding some new feature you want to work on. || We do not know what skills will be involved but we guess that churning butter will not be one of them.
 
|}
 
|}
 +
 +
'''Or learn by writing your own mini GNC algorithm''' In addition to the above projects that will allow you to jump right in to helping produce our GNC algorithms, there are a few practice onboarding projects we can guide you through where you can code your own simplified GNC subsystem. These are cool projects where you implement your own baby version of one of our core GNC algorithms to get you up to speed quickly. For example, a Kalman filter is an algorithm that takes in a bunch of noisy data from different sensors and uses knowledge of the dynamics of the system to predict the current state of the sattelite. It was invented in the early 60s to navigate people to the moon. One of the projects is coding a Kalman filter to predict the state simple dynamical systems (for example, balancing a broom on your hand by moving your hand back and forth to stabilize it). In addition to the Kalman filtering side of this, there is also a control side where you determine how much you should move your hand to keep the broom stable. Depending on how many people are interested, background, ect. We will set up either individuals or teams to write codes to tackle this GNC problem. Afterwards, you can jump into writing the equivalent code for our satellite. We will guide you through every step of the project, giving you all guidance and background materials necessary. We know this may seem complicated or daunting, but none of us started out knowing how to do this.
    
If you're interested in working on the GNC components of the satellite, you can email the leads Alec Lessing (aml2023@stanford.edu) or Rodrigo Castellon (rjcaste@stanford.edu)!
 
If you're interested in working on the GNC components of the satellite, you can email the leads Alec Lessing (aml2023@stanford.edu) or Rodrigo Castellon (rjcaste@stanford.edu)!
Line 33: Line 35:     
[[File:SequoiaGNCArchitectureOverview2.png]]
 
[[File:SequoiaGNCArchitectureOverview2.png]]
 +
 +
 +
'''Kalman Filter''' is an algorithm that takes in a bunch of noisy data from different sensors and uses knowledge of the dynamics of the system to predict the current state of the sattelite. It was invented in the early 60s to navigate people to the moon.
 +
 +
'''TortoiseSat''' is an experimental algorithm published by a Stanford lab a few months ago. It allows us to control our satellite using only magnet-torquers (small controlled current loops that create torque by interacting with Earth's magnetic field). The difficulty with this is that with magnet-torquers you can only generate a torque in two directions and not all three, which is why we need the experimental optimization algorithm to do it. We hope to demonstrate this algorithm on orbit for the first time with our satellite.
8

edits

Navigation menu