Changes

Jump to navigation Jump to search
5,289 bytes added ,  18:09, 22 September 2017
Line 100: Line 100:     
= Satellites =
 
= Satellites =
 +
=== STAR-CROSSED===
 +
The Stanford Timing And Ranging –Cross-linking Optical Small Satellite Demonstration mission is an ambitious proposal seeking to place two cubesats in low Earth orbit and establish a laser-based data link between them across hundreds of kilometers. Such a mission has never before been attempted. If successful, the technology developed will enable a dramatic leap forward in the capabilities of both cubesats and larger satellitesto communicate high volumes of data across long distances.
 +
 +
Optical links using lasers are capable of dramatically higher data transmission speeds than existing radio systems, but have never been successfully demonstrated at the cubesat scale. A cubesat-sized optical communications system willenable high-speed links between cubesats, allowing for networks built from affordable satellites.Miniaturizing an optical communications system to fit in a cubesat would also make it far easier for larger satellites to add optical networking capabilities, an almost essential component of proposed internet satellite constellations.
 +
 +
Satellites with optical links can not only transmit data faster, but also better synchronize their timekeeping with each other and measure their separation distance, important features of boththe GPS system and groups of scientific satellites. With an optical network, satellites could conduct previously impossible scientific missions and significantly improve the accuracy of GPS
 +
 +
Now is the perfect time to get involved with STAR-CROSSD. A number of subsystems need to be analyzed, designed, built, and tested, with opportunities to learn about electrical, mechanical, and software engineering, satellite operations, and more.
 +
 +
=== POINTR ===
 +
Polar Orbiting INfrared Tracking Receiver (POINTR) has been Satellites’ primary focus since February. POINTR is an in flight demonstration of an optical receiver pointing, acquisition and tracking (PAT) system. The optical receiver payload hosted on Audacy’s 3U cubesat would be pointed to the ground to acquire and track a beacon laser sent from a suitable ground facility, currently proposed as NASA JPL’s OCTL facility. This mission would demonstrate the operational and technical requirements related to two satellites establishing an optical communications link with each other. The requirements include mission planning, command and execution of a pointing maneuver, acquisition of an incoming optical signal and tracking of the optical signal. This mission can be broken into four main goals:
 +
 +
* Demonstrate a subset of technology for full bidirectional optical communications mission within the constraints placed by Audacy’s primary mission.
 +
 +
* Increase chance of bidirectional optical communications mission success.
 +
 +
* Develop experience within SSI designing and building space hardware.
 +
 +
* Contribute to the cubesat and satellite optical communications technical fields.
 +
 +
=== Our Subteams ===
 +
===Avoinics===
 +
The Avionics group works on all of the core electrical systems for the Satellites team, including electrical power distribution, sensors, and computing. Learn how to design and reflow Printed Circuit Boards (PCBs) and work with signal-processing to understand light signals in the inky darkness of space!
 +
 +
===GNC===
 +
The GNC group ("Guidance, Navigation, and Control") is responsible for determining and controlling the position and rotation of satellites in space even while hundreds or sometimes thousands of miles away. Join GNC to work with us on cutting-edge technologies and a system to control our satellites in orbit from the comfort of the SSI space bunker.
 +
 +
===Optics===
 +
Optics is all about putting light to work - starting from simple laser pointers to finally sending a communications signal across 10 kilometers in space! We use lasers, lenses, filters, sensors and even moving mirrors to send light flying through space and catch it on the other side.
 +
 +
===Software===
 +
The software team tackles the many different challenges of software needed for satellites: from flight software to web development, we do it all. For flight software, we take advantage of parallel communications modules to manage real-time requirements on pointing control. For web development, we are partnering with the ground operations team to build thorough mission control software and web interface. If any of this seems daunting or complicated, don’t worry. We all started from scratch. Join software and get your code in space!
 +
 +
===Ground Ops===
 +
The Ground Operations team will build mission control software and web interface to analyze satellite behavior in-flight and react accordingly. Aside from software, physics and orbital mechanics are crucial parts of this team’s ability. This team is responsible for testing spacecraft stability, fault tolerance, and final mission success.
 +
 +
===Structures===
 +
The Structures team designs and builds all necessary flight mechanics, ranging from the overall structure to individual component mounts. We go through the full development process - whiteboard drawings, SolidWorks, and finally manufacturing.The Structures team is also responsible for many of the environmental considerations, such as the thermal and vacuum requirements of space, as well as the shock and vibration profile of launch.
    
= Biology =
 
= Biology =
6

edits

Navigation menu